We propose a certifiably globally optimal approach for solving the hand-eye robot-world problem supporting multiple sensors and targets at once. Further, we leverage this formulation for estimating a geo-referenced calibration of infrastructure sensors. Since vehicle motion recorded by infrastructure sensors is mostly planar, obtaining a unique solution for the respective hand-eye robot-world problem is unfeasible without incorporating additional knowledge. Hence, we extend our proposed method to include a-priori knowledge, i.e., the translation norm of calibration targets, to yield a unique solution. Our approach achieves state-of-the-art results on simulated and real-world data. Especially on real-world intersection data, our approach utilizing the translation norm is the only method providing accurate results.
翻译:我们提出了一种证明具有全局最优性的方法,用于解决同时支持多个传感器和目标的手眼机器人-世界问题。此外,我们利用此公式估计了基础设施传感器的地理参考校准。由于基础设施传感器记录的车辆运动大多是平面的,因此如果不加入附加知识,即校准目标的平移规范,则无法为相应的手眼机器人-世界问题提供唯一的解决方案。因此,我们将我们提出的方法扩展到包括先验知识,即校准目标的平移规范,以产生唯一的解决方案。我们的方法在模拟数据和实际数据上均实现了最先进的结果。特别是在真实的交叉口数据中,利用平移规范的我们的方法是唯一提供准确结果的方法 。