An important statistical task in disease mapping problems is to identify divergent regions with unusually high or low risk of disease. Leave-one-out cross-validatory (LOOCV) model assessment is the gold standard for estimating predictive p-values that can flag such divergent regions. However, actual LOOCV is time-consuming because one needs to rerun a Markov chain Monte Carlo analysis for each posterior distribution in which an observation is held out as a test case. This paper introduces a new method, called integrated importance sampling (iIS), for estimating LOOCV predictive p-values with only Markov chain samples drawn from the posterior based on a full data set. The key step in iIS is that we integrate away the latent variables associated the test observation with respect to their conditional distribution \textit{without} reference to the actual observation. By following the general theory for importance sampling, the formula used by iIS can be proved to be equivalent to the LOOCV predictive p-value. We compare iIS and other three existing methods in the literature with two disease mapping datasets. Our empirical results show that the predictive p-values estimated with iIS are almost identical to the predictive p-values estimated with actual LOOCV, and outperform those given by the existing three methods, namely, the posterior predictive checking, the ordinary importance sampling, and the ghosting method by Marshall and Spiegelhalter (2003).
翻译:疾病绘图问题的一个重要统计任务是确定不同区域,其疾病风险异常高或低。请假一出跨valital(LOOCV)模型评估是估算预测值的黄金标准。然而,实际的LOOCV耗时很多,因为需要重新运行Markov链 Monte Carlo对观察结果作为试验案例进行观察的每个子宫分布的Markov连锁分析。本文介绍了一种新方法,称为综合重要性取样(iIS),用于估计LOOCV预测值P值,仅使用根据完整数据集从远洋图中提取的Markov链样本。iIS的关键步骤是,我们从测试观测中分离出与其有条件分布值相关的潜在变量\ textitilit{而不参考实际观察。根据重要性取样的一般理论,iIS使用的公式可以证明等同于LOOCVV预测值 p-价值。我们用两种疾病绘图数据集对iIS和其他三种现有方法进行了比较。我们的实证结果显示,通过预测值和预估方法,这些预测值与SOIS的S-im-imal imal imal imal imvaling iming imvaling iming iming iming imvalviewing the the the iming the iming the iming iming the iming the i-view i-viewing the i-view i-view i-view i-view i-viewings i-viewings i-view i-view i-view i-viewslview i-view i-view i-views i-view i-views i-views i-viewsal i-vial i-vial i-vial i-vial i-vi i-vi i-vial i-vi i-viewsal i-vial i-vi i-vi i-vial i-vi i-vial-vial-vial-vial-vial i-vi i-vi i-vi i-vi i-vi i-vi i-vi i-