The promise of increased road safety is a key motivator for the development of automated vehicles (AV). Yet, demonstrating that an AV is as safe as, or even safer than, a human-driven vehicle has proven to be challenging. Should an AV be examined purely virtually, allowing large numbers of fully controllable tests? Or should it be tested under real environmental conditions on a proving ground? Since different test setups have different strengths and weaknesses, it is still an open question how virtual and real tests should be combined. On the way to answer this question, this paper proposes transfer importance sampling (TIS), a risk estimation method linking different test setups. Fusing the concepts of transfer learning and importance sampling, TIS uses a scalable, cost-effective test setup to comprehensively explore an AV's behavior. The insights gained then allow parameterizing tests in a more trustworthy test setup accurately reflecting risks. We show that when using a trustworthy test setup alone is prohibitively expensive, linking it to a scalable test setup can increase efficiency $\unicode{x2013}$ without sacrificing the result's validity. Thus, the test setups' individual deficiencies are compensated for by their systematic linkage.
翻译:提高道路安全的承诺是发展自动化车辆(AV)的关键动力。然而,事实证明,AV与人驱动车辆一样安全,甚至比人驱动车辆更安全,证明具有挑战性。如果对AV进行纯虚拟的检查,允许大量完全可控的测试;或者是否应在真实的环境条件下在证明的地面进行测试?由于不同的测试设置有不同的长处和短处,如何将虚拟和真实的测试结合起来仍然是一个尚未解决的问题。在回答这一问题的路上,本文件提出转移重要性抽样(TIS),这是将不同测试设置联系起来的一种风险估计方法。采用转移学习和重要性抽样的概念,TIS使用可扩展的、成本效益高的测试设置全面探索AV的行为。随后获得的洞察结果允许在更可靠的测试设置中将测试参数化,准确地反映风险。我们表明,单使用可靠的测试设置就过于昂贵,将其与可计量的测试设置联系起来,可以提高效率$\uncode{x2013},同时又不牺牲结果的有效性。因此,测试设置个人缺陷通过系统化的连接得到补偿。