Non-parametric supervised learning algorithms represent a succinct class of supervised learning algorithms where the learning parameters are highly flexible and whose values are directly dependent on the size of the training data. In this paper, we comparatively study the properties of four nonparametric algorithms, K-Nearest Neighbours (KNNs), Support Vector Machines (SVMs), Decision trees and Random forests. The supervised learning task is a regression estimate of the time-lapse in medical insurance reimbursement. Our study is concerned precisely with how well each of the nonparametric regression models fits the training data. We quantify the goodness of fit using the R-squared metric. The results are presented with a focus on the effect of the size of the training data, the feature space dimension and hyperparameter optimization.


翻译:非参数监督的学习算法是一组简洁的受监督的学习算法,其学习参数高度灵活,其价值直接取决于培训数据的规模。在本文中,我们比较研究了四种非参数算法的特性:K-Nest邻居(KNN),支持矢量机(SVM),决策树和随机森林。受监督的学习任务是对医疗保险偿还时间的过错进行回归估计。我们的研究确切涉及每个非参数回归模型与培训数据相适应的程度。我们用R方形计量尺度量化适合的好坏。结果侧重于培训数据的规模、特征空间尺寸和超参数优化的影响。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2018年2月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2018年2月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员