This paper establishes the first almost sure convergence rate and the first maximal concentration bound with exponential tails for general contractive stochastic approximation algorithms with Markovian noise. As a corollary, we also obtain convergence rates in $L^p$. Key to our successes is a novel discretization of the mean ODE of stochastic approximation algorithms using intervals with diminishing (instead of constant) length. As applications, we provide the first almost sure convergence rate for $Q$-learning with Markovian samples without count-based learning rates. We also provide the first concentration bound for off-policy temporal difference learning with Markovian samples.
翻译:暂无翻译