ZK-SenseLM is a secure and auditable wireless sensing framework that pairs a large-model encoder for Wi-Fi channel state information (and optionally mmWave radar or RFID) with a policy-grounded decision layer and end-to-end zero-knowledge proofs of inference. The encoder uses masked spectral pretraining with phase-consistency regularization, plus a light cross-modal alignment that ties RF features to compact, human-interpretable policy tokens. To reduce unsafe actions under distribution shift, we add a calibrated selective-abstention head; the chosen risk-coverage operating point is registered and bound into the proof. We implement a four-stage proving pipeline: (C1) feature sanity and commitment, (C2) threshold and version binding, (C3) time-window binding, and (C4) PLONK-style proofs that the quantized network, given the committed window, produced the logged action and confidence. Micro-batched proving amortizes cost across adjacent windows, and a gateway option offloads proofs from low-power devices. The system integrates with differentially private federated learning and on-device personalization without weakening verifiability: model hashes and the registered threshold are part of each public statement. Across activity, presence or intrusion, respiratory proxy, and RF fingerprinting tasks, ZK-SenseLM improves macro-F1 and calibration, yields favorable coverage-risk curves under perturbations, and rejects tamper and replay with compact proofs and fast verification.


翻译:ZK-SenseLM 是一种安全且可审计的无线感知框架,它将用于Wi-Fi信道状态信息(及可选毫米波雷达或RFID)的大模型编码器与基于策略的决策层及端到端的推理零知识证明相结合。编码器采用带相位一致性正则化的掩码谱预训练,并辅以轻量级跨模态对齐,将射频特征映射至紧凑、人类可理解的策略令牌。为减少分布偏移下的不安全行为,我们增加了校准的选择性弃权头;所选的风险-覆盖操作点被注册并绑定至证明中。我们实现了一个四阶段证明流水线:(C1)特征完整性检查与承诺,(C2)阈值与版本绑定,(C3)时间窗口绑定,以及(C4)PLONK风格证明,确保量化网络在给定承诺窗口下产生了记录的动作与置信度。微批量证明将成本分摊至相邻窗口,且网关选项可将证明任务从低功耗设备卸载。该系统与差分隐私联邦学习及设备端个性化无缝集成,同时不削弱可验证性:模型哈希值与注册阈值构成每个公开声明的一部分。在活动识别、存在或入侵检测、呼吸代理及射频指纹识别等任务中,ZK-SenseLM 提升了宏观F1分数与校准性能,在扰动下呈现更优的覆盖-风险曲线,并通过紧凑证明与快速验证有效抵御篡改与重放攻击。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2020年12月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员