Learning-based congestion control (CC), including Reinforcement-Learning, promises efficient CC in a fast-changing networking landscape, where evolving communication technologies, applications and traffic workloads pose severe challenges to human-derived, static CC algorithms. Learning-based CC is in its early days and substantial research is required to understand existing limitations, identify research challenges and, eventually, yield deployable solutions for real-world networks. In this paper, we extend our prior work and present a reproducible and systematic study of learning-based CC with the aim to highlight strengths and uncover fundamental limitations of the state-of-the-art. We directly contrast said approaches with widely deployed, human-derived CC algorithms, namely TCP Cubic and BBR (version 3). We identify challenges in evaluating learning-based CC, establish a methodology for studying said approaches and perform large-scale experimentation with learning-based CC approaches that are publicly available. We show that embedding fairness directly into reward functions is effective; however, the fairness properties do not generalise into unseen conditions. We then show that RL learning-based approaches existing approaches can acquire all available bandwidth while largely maintaining low latency. Finally, we highlight that existing the latest learning-based CC approaches under-perform when the available bandwidth and end-to-end latency dynamically change while remaining resistant to non-congestive loss. As with our initial study, our experimentation codebase and datasets are publicly available with the aim to galvanise the research community towards transparency and reproducibility, which have been recognised as crucial for researching and evaluating machine-generated policies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CC:Computer Communications。 Explanation:计算机通信。 Publisher:Elsevier。 SIT: http://dblp.uni-trier.de/db/journals/comcom/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员