We propose a method to learn predictors that are invariant under counterfactual changes of certain covariates. This method is useful when the prediction target is causally influenced by covariates that should not affect the predictor output. For instance, an object recognition model may be influenced by position, orientation, or scale of the object itself. We address the problem of training predictors that are explicitly counterfactually invariant to changes of such covariates. We propose a model-agnostic regularization term based on conditional kernel mean embeddings, to enforce counterfactual invariance during training. We prove the soundness of our method, which can handle mixed categorical and continuous multi-variate attributes. Empirical results on synthetic and real-world data demonstrate the efficacy of our method in a variety of settings.
翻译:我们建议一种方法来学习在某些共变体反事实变化下变化不定的预测者。当预测目标受到不会影响预测者输出的共变体的因果影响时,这种方法是有用的。例如,物体识别模型可能受到物体本身的位置、方向或规模的影响。我们处理培训预测者的问题,这些预测者显然与这种共变体的变化背道而驰。我们提议一个以有条件内核平均值嵌入为基础的模型-不可知性正规化术语,以在训练期间强制执行反事实变异性。我们证明了我们的方法的健全性,它能够处理混合的绝对性和连续的多变性特性。合成数据和真实世界数据的经验结果显示我们方法在各种环境中的功效。