Prompt-based fine-tuning has boosted the performance of Pre-trained Language Models (PLMs) on few-shot text classification by employing task-specific prompts. Yet, PLMs are unfamiliar with prompt-style expressions during pre-training, which limits the few-shot learning performance on downstream tasks. It would be desirable if the models can acquire some prompting knowledge before adaptation to specific NLP tasks. We present the Unified Prompt Tuning (UPT) framework, leading to better few-shot text classification for BERT-style models by explicitly capturing prompting semantics from non-target NLP datasets. In UPT, a novel paradigm Prompt-Options-Verbalizer is proposed for joint prompt learning across different NLP tasks, forcing PLMs to capture task-invariant prompting knowledge. We further design a self-supervised task named Knowledge-enhanced Selective Masked Language Modeling to improve the PLM's generalization abilities for accurate adaptation to previously unseen tasks. After multi-task learning across multiple tasks, the PLM can be better prompt-tuned towards any dissimilar target tasks in low-resourced settings. Experiments over a variety of NLP tasks show that UPT consistently outperforms state-of-the-arts for prompt-based fine-tuning.
翻译:速成微调通过使用特定任务提示,提高了培训前语言模型(PLM)在短发文本分类方面的性能。 然而,PLM在培训前不熟悉快速式的表达方式,这限制了下游任务的微小学习表现。如果这些模型能够在适应具体的国家学习计划任务之前获得一些快速知识,则可取。我们提出了统一快速调试框架,通过明确从非目标国家学习计划数据集中获取提示性语义,为BERT型模式提供了更好的短发文本分类。在UPT中,提出了一个新的快速表达式快速表达式模式,用于在不同的国家学习计划任务中联合进行快速学习,迫使 PLM 捕捉任务变化性知识。我们进一步设计了名为“知识增强的选择性遮蔽语言模型”的自我监督任务,以提高PLM 准确适应先前不可见任务的一般能力。在多个任务中学习了多任务后,PLM可以更迅速地调整为低资源实验环境中任何不相近目标任务。