In this paper, we propose a framework of the mutual information-maximizing (MIM) quantized decoding for low-density parity-check (LDPC) codes by using simple mappings and fixed-point additions. Our decoding method is generic in the sense that it can be applied to LDPC codes with arbitrary degree distributions, and can be implemented based on either the belief propagation (BP) algorithm or the min-sum (MS) algorithm. In particular, we propose the MIM density evolution (MIM-DE) to construct the lookup tables (LUTs) for the node updates. The computational complexity and implementation complexity are discussed and compared to the LUT decoder variants. To accelerate the convergence speed of decoding quasi-cyclic LDPC codes, we consider the layered schedule, and develop the layered MIM-DE to design the LUTs based on MS algorithm, leading to the MIM layered quantized MS (MIM-LQMS) decoder. An optimization method is further introduced to reduce the memory requirement for storing the LUTs. Simulation results show that the MIM quantized decoders outperform the state-of-the-art LUT decoders in the waterfall region with both 3-bit and 4-bit precision. Moreover, the 4-bit MIM-LQMS decoder can approach the error performance of the floating-point layered BP decoder within 0:1 dB.
翻译:在本文中,我们提出一个信息最大化(MIM)对低密度对等检查(LDPC)代码进行量化解码的框架,方法是使用简单的绘图和固定点添加。我们的解码方法是通用的,因为它可以任意分布地应用于LDPC代码,可以基于信仰传播(BP)算法或分钟总算算(MS)算法加以实施。特别是,我们建议MIM密度演化(MIM-DE)为节点更新构建查看表(LUTs ) 。讨论计算的复杂性和执行复杂性,并与LUT解码变方进行比较。为了加快半周期对LDPC代码进行解码的趋同速度,我们考虑分层时间表,开发分层的MIM-DE来设计基于MS算法的LUTs,导致MIM分层量化的MS(MIM-L-LIMS)解码解码。进一步引入了优化方法,以减少将OIM-ODR的精确值储存LIM-MS 3号区域的记忆要求。