Elongate limbless robots have the potential to locomote through tightly packed spaces for applications such as search-and-rescue and industrial inspections. The capability to effectively and robustly maneuver elongate limbless robots is crucial to realize such potential. However, there has been limited research on turning strategies for such systems. To achieve effective and robust turning performance in cluttered spaces, we take inspiration from a microscopic nematode, C. elegans, which exhibits remarkable maneuverability in rheologically complex environments partially because of its ability to perform omega turns. Despite recent efforts to analyze omega turn kinematics, it remains unknown if there exists a wave equation sufficient to prescribe an omega turn, let alone its reconstruction on robot platforms. Here, using a comparative theory-biology approach, we prescribe the omega turn as a superposition of two traveling waves. With wave equations as a guideline, we design a controller for limbless robots enabling robust and effective turning behaviors in lab and cluttered field environments. Finally, we show that such omega turn controllers can also generalize to elongate multi-legged robots, demonstrating an alternative effective body-driven turning strategy for elongate robots, with and without limbs.
翻译:暂无翻译