Mixup is a popular data-dependent augmentation technique for deep neural networks, which contains two sub-tasks, mixup generation, and classification. The community typically confines mixup to supervised learning (SL) and the objective of the generation sub-task is fixed to selected sample pair instead of considering the whole data manifold. To overcome such limitations, we systematically study the mixup generation objective and propose Scenario-Agnostic Mixup for both SL and Self-supervised Learning (SSL) scenarios, named SAMix. Specifically, we hypothesize and verify the objective function of mixup generation as optimizing local smoothness between two mixed classes subject to global discrimination from other classes. Therefore, we propose $\eta$-balanced mixup loss for complementary learning of the two sub-objectives. Meanwhile, we parameterize the generation sub-task as a learnable sub-network, Mixer, with mixing attention which avoids trivial solutions and improves transferable abilities. To eliminate the computational cost of online training, we introduce a pre-trained version, SAMix$^\mathcal{P}$, that achieves efficient performance in various tasks. Extensive experiments on SL and SSL benchmarks demonstrate that SAMix consistently outperforms leading methods.
翻译:在深神经网络中,混合是一种流行的数据依赖增强技术,它包含两个子任务、混合生成和分类。社区通常将混在一起局限于监督学习(SL),而生成子任务的目标则固定在选定的抽样对口上,而不是考虑整个数据方方面面。为了克服这些局限性,我们系统地研究混合生成目标,并为SL和自监督学习(SSL)设想方案(称为SAMix)提出设想-Agnotismix。具体地说,我们虚度和核实混合生成的目标功能,即优化受其他类别全球歧视的两个混合类别之间的地方平稳。因此,我们提议为补充学习两个子目标而损失$\eta$平衡的混合。同时,我们将生成子任务作为可学习的子网络(Mixer)进行参数化,将注意力混在一起,避免微小的解决方案,提高可转让能力。为了消除在线培训的计算成本,我们引入了预先培训版本,SAMix${mathcal{P}$,以美元为最佳地方平衡。我们提议为两个子目标的补充学习模式,以持续地展示SMAx基准。