Motivated by applications to DNA-storage, flash memory, and magnetic recording, we study perfect burst-correcting codes for the limited-magnitude error channel. These codes are lattices that tile the integer grid with the appropriate error ball. We construct two classes of such perfect codes correcting a single burst of length $2$ for $(1,0)$-limited-magnitude errors, both for cyclic and non-cyclic bursts. We also present a generic construction that requires a primitive element in a finite field with specific properties. We then show that in various parameter regimes such primitive elements exist, and hence, infinitely many perfect burst-correcting codes exist.
翻译:以DNA存储、闪存和磁录应用为动力,我们研究了有限放大误差通道的完美防爆校正代码。这些代码是用适当的误差球将整数网格叠叠起来的层码。我们建造了两层这样的完美代码,纠正单长2美元($1,0)的错误,用于周期性和非周期性暴发。我们还提出了一个通用的构造,要求有特定特性的有限领域有一个原始元素。我们然后表明,在各种参数系统中存在这种原始元素,因此,存在无限多的完美防爆校正代码。