In a recent study of auditory evoked potential (AEP) based brain-computer interface (BCI), it was shown that, with an encoder-decoder framework, it is possible to translate human neural activity to speech (T-CAS). However, current encoder-decoder-based methods achieve T-CAS often with a two-step method where the information is passed between the encoder and decoder with a shared dimension reduction vector, which may result in a loss of information. A potential approach to this problem is to design an end-to-end method by using a dual generative adversarial network (DualGAN) without dimension reduction of passing information, but it cannot realize one-to-one signal-to-signal translation (see Fig.1 (a) and (b)). In this paper, we propose an end-to-end model to translate human neural activity to speech directly, create a new electroencephalogram (EEG) datasets for participants with good attention by design a device to detect participants' attention, and introduce a dual-dual generative adversarial network (Dual-DualGAN) (see Fig. 1 (c) and (d)) to address an end-to-end translation of human neural activity to speech (ET-CAS) problem by group labelling EEG signals and speech signals, inserting a transition domain to realize cross-domain mapping. In the transition domain, the transition signals are cascaded by the corresponding EEG and speech signals in a certain proportion, which can build bridges for EEG and speech signals without corresponding features, and realize one-to-one cross-domain EEG-to-speech translation. The proposed method can translate word-length and sentence-length sequences of neural activity to speech. Experimental evaluation has been conducted to show that the proposed method significantly outperforms state-of-the-art methods on both words and sentences of auditory stimulus.


翻译:在最近对听力触发潜力(AEP)的大脑-计算机界面(BCI)的研究中,发现使用一个编码器-解码器框架,可以将人类神经活动转换为语音(T-CAS),但目前基于编码器-解码器的方法往往能以两步方法实现T-CAS,信息在编码器和解码器之间传递,并具有共同的减少维度矢量矢量,这可能导致信息丢失。这一问题的一个潜在办法是设计一种端对端方法,即使用双级正对端信号网络(DualGAN)来设计一个端对端信号(DalGAN),使用双端的直立式语音信号网络(DalGAN)来减少传递信息,但无法实现一对一对一的信号-信号到信号转换(见Fig.1(a)和(b))。 在本文中,我们提出了一个端对端将人类神经活动转换为直方,创建新的电脑图(EEEEEEEG),通过设计一个可检测参与者注意的装置,并在一个双端对端的语音语音语音语音语音信号转换中引入一个双向电子-EEEEE-E-e-e-eq-eq-eal-de-de-al-al-alal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-alup-com-al-al-al-com-al-alup-de-de-de-de-de-com-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-comm-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
CycleGAN:图片风格,想换就换 | ICCV 2017论文解读
PaperWeekly
12+阅读 · 2018年3月14日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
从2017年顶会论文看Attention Model
黑龙江大学自然语言处理实验室
5+阅读 · 2017年11月1日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深入浅出:GAN原理与应用入门介绍
深度学习世界
6+阅读 · 2017年8月23日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
6+阅读 · 2019年4月4日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
CycleGAN:图片风格,想换就换 | ICCV 2017论文解读
PaperWeekly
12+阅读 · 2018年3月14日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
从2017年顶会论文看Attention Model
黑龙江大学自然语言处理实验室
5+阅读 · 2017年11月1日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深入浅出:GAN原理与应用入门介绍
深度学习世界
6+阅读 · 2017年8月23日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员