An $(n,k,\ell)$ array code has $k$ information coordinates and $r = n-k$ parity coordinates, where each coordinate is a vector in $\mathbb{F}_q^{\ell}$ for some field $\mathbb{F}_q$. An $(n,k,\ell)$ MDS array code has the additional property that any $k$ out of $n$ coordinates suffice to recover the whole codeword. Dimakis et al. considered the problem of repairing the erasure of a single coordinate and proved a lower bound on the amount of data transmission that is needed for the repair. A minimum storage regenerating (MSR) array code with repair degree $d$ is an MDS array code that achieves this lower bound for the repair of any single erased coordinate from any $d$ out of $n-1$ remaining coordinates. An MSR code has the optimal access property if the amount of accessed data is the same as the amount of transmitted data in the repair procedure. The sub-packetization $\ell$ and the field size $q$ are of paramount importance in the MSR array code constructions. For optimal-access MSR codes, Balaji et al. proved that $\ell\geq s^{\left\lceil n/s \right\rceil}$, where $s = d-k+1$. Rawat et al. showed that this lower bound is attainable for all admissible values of $d$ when the field size is exponential in $n$. After that, tremendous efforts have been devoted to reducing the field size. However, till now, reduction to linear field size is only available for $d\in\{k+1,k+2,k+3\}$ and $d=n-1$. In this paper, we construct optimal-access MSR codes with linear field size and smallest sub-packetization $\ell = s^{\left\lceil n/s \right\rceil}$ for all $d$ between $k+1$ and $n-1$. We also construct another class of MSR codes that are not optimal-access but have even smaller sub-packetization $s^{\left\lceil n/(s+1)\right\rceil }$. The second class also has linear field size and works for all admissible values of $d$.
翻译:任意数量辅助节点的线性域大小和最小子分组化的MSR码
翻译后的摘要:
一个$(n,k,\ell)$数组码有$k$个信息坐标和$r=n-k$个奇偶校验坐标,其中每个坐标都是某个域$ \mathbb{F}_q^\ell$中的向量。一个$(n,k,\ell)$ MDS数组码具有额外的性质,即任何$k$个坐标足以恢复整个码字。Dimakis等人考虑了修复单个坐标的擦除问题,并证明了修复所需的数据传输量的下界。修复度为$d$的最小存储再生(MSR)数组码是一种MDS数组码,其为从任何$n-1$个剩余坐标中恢复任何单个擦除的坐标赢得了擦除修复下限。如果MSR码具有最优访问属性,则在修复过程中访问的数据量与传输的数据量相同。子分组化$\ell$和域大小$q$对于MSR数组码的构建至关重要。对于最优访问的MSR码,Balaji等人证明了$\ell\geq s^{\left\lceil n/s \right\rceil}$,其中$s=d-k+1$。Rawat等人表明,当场的大小在$n$的指数级别时,此下界是可达到的。此后,人们付出了巨大的努力来缩小域的大小。然而,到目前为止,只有$d\in\{k+1,k+2,k+3\}$和$d=n-1$时可以缩小到线性域大小。在本文中,我们构建了线性域大小和最小子分组化$\ell = s^{\left\lceil n/s \right\rceil}$的最优访问MSR码,使$d$在$k+1$和$n-1$之间。我们还构建了另一类MSR码,它们不具有最优访问性,但具有更小的子分组化$s^{\left\lceil n/(s+1)\right\rceil }$。第二类还具有线性域大小,适用于所有可接受的$d$值。