In the first part of this article, we study feedback stabilization of a parabolic coupled system by using localized interior controls. The system is feedback stabilizable with exponential decay $-\omega<0$ for any $\omega>0$. A stabilizing control is found in feedback form by solving a suitable algebraic Riccati equation. In the second part, a conforming finite element method is employed to approximate the continuous system by a finite dimensional discrete system. The approximated system is also feedback stabilizable (uniformly) with exponential decay $-\omega+\epsilon$, for any $\epsilon>0$ and the feedback control is obtained by solving a discrete algebraic Riccati equation. The error estimate of stabilized solutions as well as stabilizing feedback controls are obtained. We validate the theoretical results by numerical implementations.
翻译:本文的第一部分通过使用局部内部控制研究了带耦合的抛物型方程系统的反馈稳定。对于任何 $\omega>0$,该系统都具有指数衰减 $-\omega<0$ 的稳定性。通过解决适当的代数Riccati方程,得到了反馈形式的稳定控制。在第二部分中,采用一致有限元法将连续系统近似为有限维离散系统。近似系统也可以通过反馈控制(一致)稳定,其指数衰减为 $-\omega+\epsilon$,对于任何 $\epsilon>0$,反馈控制是通过解离散代数Riccati方程获得的。得到了稳定解的误差估计以及稳定反馈控制。我们通过数值实现来验证理论结果。