P-time event graphs (P-TEGs) are event graphs where the residence time of tokens in places is bounded by specified time windows. In this paper, we define a new property of PTEGs, called weak consistency. In weakly consistent P-TEGs, the amount of times a transition can fire before the first violation of a time constraint can be made as large as desired. We show the practical implications of this property and, based on previous results in graph theory, we formulate an algorithm of strongly polynomial time complexity that verifies it. From this algorithm, it is possible to determine, in pseudo-polynomial time, the maximum number of firings before the first constraint violation in a P-TEG.
翻译:P- 时间事件图表( P- TEGs) 是事件图表, 地方标记的停留时间被指定的时间窗口所约束。 在本文中, 我们定义了PTEGs的新属性, 称为一致性差。 在简略一致的 P- TEGs 中, 在第一次违反时间限制之前的过渡时间可以达到预期的大小。 我们显示了该属性的实际影响, 根据先前的图表理论结果, 我们根据先前的图表理论结果, 设计了一种强烈多元时间复杂性的算法, 来验证它。 通过此算法, 可以确定 P- TEG 第一次违反限制前的最大射击次数 。