Adversarial training has achieved substantial performance in defending image retrieval systems against adversarial examples. However, existing studies still suffer from two major limitations: model collapse and weak adversary. This paper addresses these two limitations by proposing collapse-oriented (COLO) adversarial training with triplet decoupling (TRIDE). Specifically, COLO prevents model collapse by temporally orienting the perturbation update direction with a new collapse metric, while TRIDE yields a strong adversary by spatially decoupling the update targets of perturbation into the anchor and the two candidates of a triplet. Experimental results demonstrate that our COLO-TRIDE outperforms the current state of the art by 7% on average over 10 robustness metrics and across 3 popular datasets. In addition, we identify the fairness limitations of commonly used robustness metrics in image retrieval and propose a new metric for more meaningful robustness evaluation. Codes will be made publicly available on GitHub.
翻译:暂无翻译