In [1] it is shown that recurrent neural networks (RNNs) can learn - in a metric entropy optimal manner - discrete time, linear time-invariant (LTI) systems. This is effected by comparing the number of bits needed to encode the approximating RNN to the metric entropy of the class of LTI systems under consideration [2, 3]. The purpose of this note is to provide an elementary self-contained proof of the metric entropy results in [2, 3], in the process of which minor mathematical issues appearing in [2, 3] are cleaned up. These corrections also lead to the correction of a constant in a result in [1] (see Remark 2.5).


翻译:[1] [1]中显示,经常性神经网络(RNNs)可以学习 -- -- 以公吨最佳方式 -- -- 离散时间、线性时变(LTI)系统,这是通过比较将相近的RNN编码为[2、3]审议中的LTI系统类的公倍数所需的位数来实现的。本说明的目的是在[2、3]中提供关于公吨结果的基本自足证明,在其中清理[2、3]中出现的微小数学问题。这些更正还导致对常数的校正,结果为[1](见Remark 2.5)。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月29日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员