Motivated by the corrected form of the entropy-area law, and with the help of von Neumann entropy of quantum matter, we construct an emergent spacetime by the virtue of the geometric language of statistical information manifolds. We discuss the link between Wald--Jacobson approaches of thermodynamic/gravity correspondence and Fisher pseudo-Riemannian metric of information manifold. We derive in detail Einstein's field equations in statistical information geometric forms. This results in finding a quantum origin of a positive cosmological constant that is founded on Fisher metric. This cosmological constant resembles those found in Lovelock's theories in a de Sitter background as a result of using the complex extension of spacetime and the Gaussian exponential families of probability distributions, and we find a time varying dynamical gravitational constant as a function of Fisher metric together with the corresponding Ryu-Takayanagi formula of such system. Consequently, we obtain a dynamical equation for the entropy in information manifold using Liouville-von Neumann equation from the Hamiltonian of the system. This Hamiltonian is suggested to be non-Hermitian, which corroborates the approaches that relate non-unitary conformal field theories to information manifolds. This provides some insights on resolving "the problem of time".
翻译:我们根据修正的英特罗比地区法的形式,并在冯纽曼的量子物质昆虫的帮助下,通过统计信息方块的几何语言,我们建造了一个新兴的时空。我们讨论了热动力/重力通信Wald-Jacobson方法与渔业假利曼尼西信息方块之间的联系。我们从统计信息几何形式中详细得出爱因斯坦的实地方程式。因此,我们找到了一个积极的宇宙常数的量等值来源,该常数以Fisher 度为基础。这个宇宙常数类似于Lovelock理论中在De Sitter背景中发现的时空常数,因为使用了复杂的空间时间扩展和高斯概率分布的指数组合,我们发现了时间变化不定的动态重力常数,作为渔业度的函数,同时采用了相应的系统龙特-Takayanagi公式。因此,我们获得了一个动态的方程式,用于使用Fisherlital 的Liouville-voonmann方程式。这个宇宙常数常数类似于Lovellocks,这是使用系统汉密尔密尔顿式系统的非历史级理论,它提供了某种非方向的校正解。