We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application. Instead of using large over-parameterised generative networks to create sharp picture representations, we build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details. Additional to the data fidelity term, we also add Hessian and sparse constraints as regularization terms to improve the image reconstruction quality. Our proposed model is \textit{self-supervised} and converges to a solution based purely on the input blurred image and respective blur kernel without the requirement of any pre-training. We evaluate our technique using standard computer vision benchmarking datasets as well as real microscope images obtained by our enhanced depth-of-field (EDOF) underwater microscope, demonstrating the capabilities of our model in a real-world application. The quantitative results demonstrate that our approach is competitive with state-of-the-art non-blind image deblurring methods despite having a fraction of the parameters and not being pre-trained, demonstrating the efficiency and efficacy of embedding a classic deconvolution approach inside a deep network.


翻译:我们提出了一个将经典迭代方法纳入深层学习应用的非盲视图像变异模型,将经典迭代方法纳入到一个深层学习应用中。我们不使用大型过度参数化的基因化网络来制作清晰的图片演示,而是在迭代Landweber变异算法的基础上建立我们的网络,该算法与可训练的变幻层相结合,以加强回收的图像结构和细节。除了数据忠诚术语外,我们还将Hessian和稀疏的限制作为提高图像重建质量的正规化术语。我们的拟议模型是\ textit{自我监督},并汇集到一个完全基于输入模糊图像和各自模糊内核的解决方案,而无需任何培训前要求。我们用标准计算机视觉基准数据集以及我们通过增强的实地深度水下显微镜获得的真正显微镜图像来评估我们的技术,以展示我们模型在现实世界应用中的能力。定量结果显示,我们的方法具有竞争力,尽管有一定的参数,并且没有经过预先训练,展示了深层网络内嵌化过程的效率和效能。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
13+阅读 · 2020年8月3日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员