Characteristic imsets are 0-1 vectors which correspond to Markov equivalence classes of directed acyclic graphs. The study of their convex hull, named the characteristic imset polytope, has led to new and interesting geometric perspectives on the important problem of causal discovery. In this paper we begin the study of the associated toric ideal. We develop a new generalization of the toric fiber product, which we call a quasi-independence gluing, and show that under certain combinatorial homogeneity conditions, one can iteratively compute a Gr\"obner basis via lifting. For faces of the characteristic imset polytope associated to trees, we apply this technique to compute a Gr\"obner basis for the associated toric ideal. We end with a study of the characteristic ideal of the cycle and propose directions for future work.
翻译:典型的形态是 0 - 1 矢量, 与定向环形图的 Markov 等值等级相对应。 研究它们的锥形船体, 命名为典型的隐性聚石块, 导致对重要的因果发现问题的新的和有趣的几何观点。 在本文中, 我们开始研究相关的直肠理想。 我们开发了一种对托瑞克纤维产品的新的概括化, 我们称之为准独立的凝胶, 并显示在某些组合式同质性条件下, 人们可以通过抬起的方式迭接地计算 Gr\“ obner 基础 。 对于与树木相关的典型的隐性聚石块的面部, 我们应用这种技术来计算相关的直肠理想的“ 浮质基础 ” 。 我们最后研究该循环的特性理想, 并提出未来工作的方向 。