Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of small areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal permits the analysis of big data sets and provides better results than fitting a single multivariate model.
翻译:尽管近年来对疾病绘图进行了大量研究,但由于执行和计算负担的困难,使用多变空间数据模型仍然有限,因为执行困难和计算负担困难,这些问题在小地区数量非常大时更加严重。在本文件中,我们同时采用无定秩序的多变可缩放巴伊西亚模型方法,以平滑几种疾病的死亡(或发病率)风险。该提案将空间域分成小分区,在每个分区适用多变模型,并获得整个空间域相对风险的后方分布。该方法还提供每个分区疾病空间模式的后方相关关系,并通过一个协商一致的蒙特卡洛算法,为整个研究区域获取相关关系。我们实施在R包大型DM中采用综合巢状拉普近似(INLA)的建议,并使用它共同分析西班牙各城市的肤色、肺癌和胃癌死亡率数据。新提案允许对大数据集进行分析,并提供了比适合单一多变模型更好的结果。