An integrated experimental, computational, and non-deterministic approach is demonstrated to predict the damage tolerance of an aluminum plate reinforced with a co-cured bonded quasi-isotropic E-glass/epoxy composite overlay and to determine the most sensitive material parameters and their ranges of influence on the damage tolerance of the hybrid system. To simulate the complex progressive damage in the repaired structure, a high fidelity three-dimensional finite element model is developed and validated using four-point bend testing to investigate potential damage mechanisms. A surrogate model is then generated to explore the complex parameter space of this model. Global sensitivity analysis and uncertainty quantification are performed for non-deterministic analysis to characterize the energy absorption capability of the patched structure relative to these influential design properties. Additionally, correlating the data quality of the material parameters with the sensitivity analysis results provides practical guidelines for model improvement and the design optimization of the patched structure.
翻译:演示了一种综合的实验、计算和非确定性方法,以预测一个铝板的损害耐受度,该板块加固了一种联结的准同位素E-玻璃/环氧复合重叠覆盖物,并确定最敏感的材料参数及其对混合系统损害耐受度的影响范围;为模拟修复结构的复杂渐进损害,利用四点弯曲测试来调查潜在损害机制,开发并验证了一个高度忠诚的三维有限元素模型;随后产生了一种替代模型,以探索这一模型的复杂参数空间;为确定与这些有影响力的设计特性相比,对接合结构的能量吸收能力进行了全球敏感性分析和不确定性量化;此外,将材料参数的数据质量与敏感度分析结果挂钩,为模型改进和对包装结构的设计优化提供了实用指南。