Stereo visual odometry is widely used where a robot tracks its position and orientation using stereo cameras. Most of the approaches recovered mobile robotics motion based on the matching and tracking of point features along a sequence of stereo images. But in low-textured and dynamic scenes, there are no sufficient robust static point features for motion estimation, causing lots of previous work to fail to reconstruct the robotic motion. However, line features can be detected in such low-textured and dynamic scenes. In this paper, we proposed DynPL-SVO, a stereo visual odometry with the $dynamic$ $grid$ algorithm and the cost function containing both vertical and horizontal information of the line features. Stereo camera motion was obtained through Levenberg-Marquard minimization of re-projection error of point and line features. The experimental results on the KITTI and EuRoC MAV datasets showed that the DynPL-SVO had a competitive performance when compared to other state-of-the-art systems by producing more robust and accurate motion estimation, especially in low-textured and dynamic scenes.
翻译:在使用立体摄像机跟踪其位置和方向的机器人中,广泛使用立体摄像机的立体视觉测量方法。大多数方法都是通过对立体图像序列中的点特征进行匹配和跟踪来回收移动机器人运动。但在低温度和动态场景中,没有足够稳健的固定点特征来进行运动估计,导致许多先前的工作未能重建机器人运动。然而,在这种低温度和动态场景中,可以检测到线性特征。在本文中,我们提议DynPL-SVO,一种具有美元动态值的立体视觉测量法,以及包含线性特征垂直和横向信息的成本函数。 Steo摄像运动是通过Levenberg-Marquard重新预测点和线性特征错误的最小化获得的。KITTI和EuRoC MAV数据集的实验结果表明,DynPL-SVO与其他最先进的系统相比,通过产生更稳健和准确的动作估计,特别是在低潮和动态场景中,具有竞争性的性能。