This work presents an optimal sampling-based method to solve the real-time motion planning problem in static and dynamic environments, exploiting the Rapid-exploring Random Trees (RRT) algorithm and the Model Predictive Path Integral (MPPI) algorithm. The RRT algorithm provides a nominal mean value of the random control distribution in the MPPI algorithm, resulting in satisfactory control performance in static and dynamic environments without a need for fine parameter tuning. We also discuss the importance of choosing the right mean of the MPPI algorithm, which balances exploration and optimality gap, given a fixed sample size. In particular, a sufficiently large mean is required to explore the state space enough, and a sufficiently small mean is required to guarantee that the samples reconstruct the optimal controls. The proposed methodology automates the procedure of choosing the right mean by incorporating the RRT algorithm. The simulations demonstrate that the proposed algorithm can solve the motion planning problem in real-time for static or dynamic environments.
翻译:这项工作是解决静态和动态环境中实时运动规划问题的最佳抽样方法,利用快速探索随机树算法和模型预测路径综合算法。RRT算法提供了移动电话定位算法随机控制分布的名义平均值,从而在静态和动态环境中产生令人满意的控制性能,而不需要微调参数。我们还讨论了选择移动电话定位算法正确值的重要性,该算法平衡了勘探和最佳性能差距,考虑到固定的样本大小。特别是,需要足够大的平均值来探索国家空间,还需要足够小的平均值来保证样品重建最佳控制。拟议的方法将采用RRT算法选择正确值的程序自动化。模拟表明,拟议的算法可以在固定或动态环境中实时解决运动规划问题。