Identifying vulnerabilities in the source code is essential to protect the software systems from cyber security attacks. It, however, is also a challenging step that requires specialized expertise in security and code representation. To this end, we aim to develop a general, practical, and programming language-independent model capable of running on various source codes and libraries without difficulty. Therefore, we consider vulnerability detection as an inductive text classification problem and propose ReGVD, a simple yet effective graph neural network-based model for the problem. In particular, ReGVD views each raw source code as a flat sequence of tokens to build a graph, wherein node features are initialized by only the token embedding layer of a pre-trained programming language (PL) model. ReGVD then leverages residual connection among GNN layers and examines a mixture of graph-level sum and max poolings to return a graph embedding for the source code. Experimental results demonstrate that ReGVD outperforms the existing state-of-the-art models and obtains the highest accuracy on the real-world benchmark dataset from CodeXGLUE for vulnerability detection. Our code is available at: \url{https://github.com/daiquocnguyen/GNN-ReGVD}.


翻译:在源代码中识别脆弱性对于保护软件系统免遭网络安全攻击至关重要,但这也是一个具有挑战性的步骤,需要安全和代码代表方面的专业知识。为此,我们的目标是开发一个通用的、实用的和编程上独立的语言模型,能够毫无困难地运行于各种源代码和图书馆。因此,我们认为脆弱性检测是一个感化文本分类问题,并提议使用一个简单而有效的图形神经网络模型ReGVD,这是一个简单的、有效的系统神经网络模型。特别是,ReGVD将每种原始源代码视为一个平坦的符号序列,用于构建一个图形,其中仅由事先培训的编程语言模型的象征性嵌入层来初始化节点特征。ReGVD随后利用GNN各层之间的剩余连接,并审查一组图形级总和最大集合的混合物,以返回源代码嵌入的图。实验结果显示,REGVD超越了现有状态的模型,并获得了用于脆弱性检测的代码中真实世界基准数据集的最高精确度。我们的代码可在以下查阅:NFNG/GNG=NG。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
ArXiv2021 | Customized Graph Neural Networks
图与推荐
1+阅读 · 2021年12月27日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
ArXiv2021 | Customized Graph Neural Networks
图与推荐
1+阅读 · 2021年12月27日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员