Gaussian processes (GPs) are ubiquitously used in sciences and engineering as metamodels. Standard GPs, however, can only handle numerical or quantitative variables. In this paper, we introduce latent map Gaussian processes (LMGPs) that inherit the attractive properties of GPs and are also applicable to mixed data which have both quantitative and qualitative inputs. The core idea behind LMGPs is to learn a continuous, low-dimensional latent space or manifold which encodes all qualitative inputs. To learn this manifold, we first assign a unique prior vector representation to each combination of qualitative inputs. We then use a low-rank linear map to project these priors on a manifold that characterizes the posterior representations. As the posteriors are quantitative, they can be directly used in any standard correlation function such as the Gaussian or Matern. Hence, the optimal map and the corresponding manifold, along with other hyperparameters of the correlation function, can be systematically learned via maximum likelihood estimation. Through a wide range of analytic and real-world examples, we demonstrate the advantages of LMGPs over state-of-the-art methods in terms of accuracy and versatility. In particular, we show that LMGPs can handle variable-length inputs, have an explainable neural network interpretation, and provide insights into how qualitative inputs affect the response or interact with each other. We also employ LMGPs in Bayesian optimization and illustrate that they can discover optimal compound compositions more efficiently than conventional methods that convert compositions to qualitative variables via manual featurization.


翻译:高斯进程( GPs) 被广泛用于科学和工程, 作为元模。 标准 GPs 只能处理数字或数量变量。 在本文中, 我们引入了继承 GPs 具有吸引力的特性的潜伏 Gaussian 进程( LMGP ), 并适用于具有定量和定性投入的混合数据。 LMGP 的核心理念是学习一个连续的、低维潜伏的空间或将所有质量投入编码起来的元件。 要学习这个元件, 我们首先为每种质量投入组合指定一个独特的先前矢量代表。 我们然后使用一个低层次的线性分布图, 将这些前端组成投放到一个具有后方特征的公式上。 由于后方是量化的, 它们可以直接用于任何标准的关联性功能, 如高点或玛德尔等。 因此, 最佳的地图和对应的元件, 以及其它超度参数, 可以通过最大的可能性估计, 系统学习。 通过一系列的解析和现实的示例, 我们展示了LMGPs 的高级变量的精度, 和可解释方法, 以比我们更精确的直径的精度 。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员