We explore the connections between Green's functions for certain differential equations, covariance functions for Gaussian processes, and the smoothing splines problem. Conventionally, the smoothing spline problem is considered in a setting of reproducing kernel Hilbert spaces, but here we present a more direct approach. With this approach, some choices that are implicit in the reproducing kernel Hilbert space setting stand out, one example being choice of boundary conditions and more elaborate shape restrictions. The paper first explores the Laplace operator and the Poisson equation and studies the corresponding Green's functions under various boundary conditions and constraints. Explicit functional forms are derived in a range of examples. These examples include several novel forms of the Green's function that, to the author's knowledge, have not previously been presented. Next we present a smoothing spline problem where we penalize the integrated squared derivative of the function to be estimated. We then show how the solution can be explicitly computed using the Green's function for the Laplace operator. In the last part of the paper, we explore the connection between Gaussian processes and differential equations, and show how the Laplace operator is related to Brownian processes and how processes that arise due to boundary conditions and shape constraints can be viewed as conditional Gaussian processes. The presented connection between Green's functions for the Laplace operator and covariance functions for Brownian processes allows us to introduce several new novel Brownian processes with specific behaviors. Finally, we consider the connection between Gaussian process priors and smoothing splines.
翻译:我们探索Green 的功能与某些差异方程式、 Gausian 进程的共性功能以及平滑的样板问题之间的关联。 常规上, 平滑的样板问题是在复制核心Hilbert 空间的设置中考虑的, 但是我们在这里展示了一个更直接的方法。 有了这个方法, 一些在复制核心Hilbert 空间中隐含的选择, 一个例子是选择边界条件和更复杂的形状限制。 文件首先探索 Laplace 操作员和 Poisson 等式, 并在各种边界条件和限制下研究相应的绿色功能。 清晰的功能形式在一系列例子中产生。 这些例子包括绿色功能的几种新形式, 这些新形式对于作者来说, 尚未出现。 下一个是光滑的样板问题, 我们惩罚了该功能的综合正方形衍生物, 然后我们展示了如何使用 Green 功能来明确计算Laplace 操作员。 在本文的最后一个部分, 我们探索了高斯 进程和差异方程式之间的关联, 以及我们所展示的纸质进程和 的路径 将最终连接到 绿色操作者 的顺序, 将多少 和 的平面的阶进程与绿色操作进程联系起来关系, 将如何理解到 。