Gaussian processes (GPs) are used to make medical and scientific decisions, including in cardiac care and monitoring of carbon dioxide emissions. But the choice of GP kernel is often somewhat arbitrary. In particular, uncountably many kernels typically align with qualitative prior knowledge (e.g. function smoothness or stationarity). But in practice, data analysts choose among a handful of convenient standard kernels (e.g. squared exponential). In the present work, we ask: Would decisions made with a GP differ under other, qualitatively interchangeable kernels? We show how to formulate this sensitivity analysis as a constrained optimization problem over a finite-dimensional space. We can then use standard optimizers to identify substantive changes in relevant decisions made with a GP. We demonstrate in both synthetic and real-world examples that decisions made with a GP can exhibit substantial sensitivity to kernel choice, even when prior draws are qualitatively interchangeable to a user.
翻译:Gausian 进程( GPs) 用于做出医学和科学决定, 包括心脏护理和二氧化碳排放监测。 但是, GP内核的选择往往有些武断。 特别是, 无法估量的许多内核通常与质量方面的先前知识( 如功能平滑或固定性) 一致。 但在实践中, 数据分析员在少数方便的标准内核( 如平方指数 ) 中做出选择。 在目前的工作中, 我们问 : 在其它质量可互换的内核下, GP 做出的决定是否会有所不同? 我们展示了如何将这种敏感性分析作为有限空间的有限优化问题来进行。 我们然后可以使用标准优化器来确定与GP 一起做出的相关决定的实质性变化。 我们在合成和现实世界中都展示了与GP 一起做出的决定能够对内核选择产生极大敏感性的例子, 即使先前的抽取可以对用户进行质量上的互换。