Introducing prior auxiliary information from the knowledge graph (KG) to assist the user-item graph can improve the comprehensive performance of the recommender system. Many recent studies show that the ensemble properties of hyperbolic spaces fit the scale-free and hierarchical characteristics exhibited in the above two types of graphs well. However, existing hyperbolic methods ignore the consideration of equivariance, thus they cannot generalize symmetric features under given transformations, which seriously limits the capability of the model. Moreover, they cannot balance preserving the heterogeneity and mining the high-order entity information to users across two graphs. To fill these gaps, we propose a rigorously Lorentz group equivariant knowledge-enhanced collaborative filtering model (LECF). Innovatively, we jointly update the attribute embeddings (containing the high-order entity signals from the KG) and hyperbolic embeddings (the distance between hyperbolic embeddings reveals the recommendation tendency) by the LECF layer with Lorentz Equivariant Transformation. Moreover, we propose Hyperbolic Sparse Attention Mechanism to sample the most informative neighbor nodes. Lorentz equivariance is strictly maintained throughout the entire model, and enforcing equivariance is proven necessary experimentally. Extensive experiments on three real-world benchmarks demonstrate that LECF remarkably outperforms state-of-the-art methods.
翻译:从知识图( KG) 引入先前的辅助信息以协助用户项目图可以提高推荐者系统的全面性能。 许多最近的研究表明, 超双曲空间的组合特性符合以上两种图表中显示的无比例和等级特性。 但是, 现有的超双曲方法忽略了对等性考虑, 因此无法在给定的变换中将对称性特征( 这会严重限制模型的能力) 。 此外, 它们无法平衡保存异质性, 并在两个图中向用户挖掘高等级实体信息。 为了填补这些空白, 我们提议严格使用Lorentz 组的等离异性知识增强协作过滤模型( LECF)。 创新地说, 我们共同更新属性嵌入( 包含高排序实体来自 KG 的信号) 和超偏向嵌入式嵌入( 超偏化嵌入显示模型显示建议趋势 ) 。 此外, 我们提议用Lorentz Equity Transial 变换, 在整个试样模型中, 保持双偏偏偏偏偏偏偏偏偏偏偏偏偏向偏向最可靠的知识 合作过滤式,, 的试样的试样 。 的试样的实验性实验性实验性实验基础是 。 。 完全地, 直观地, 直观地实验性实验性实验性试测地, 试测地实验性实验性实验性实验性试样是 。