Multi-scale processing is essential in image processing and computer graphics. Halos are a central issue in multi-scale processing. Several edge-preserving decompositions resolve halos, e.g., local Laplacian filtering (LLF), by extending the Laplacian pyramid to have an edge-preserving property. Its processing is costly; thus, an approximated acceleration of fast LLF was proposed to linearly interpolate multiple Laplacian pyramids. This paper further improves the accuracy by Fourier series expansion, named Fourier LLF. Our results showed that Fourier LLF has a higher accuracy for the same number of pyramids. Moreover, Fourier LLF exhibits parameter-adaptive property for content-adaptive filtering. The code is available at: https://norishigefukushima.github.io/GaussianFourierPyramid/.
翻译:在图像处理和计算机图形中,多尺度处理是必不可少的。Halos是多尺度处理的一个中心问题。一些边缘保存分解解溶液溶液,例如当地的拉普拉西亚过滤器(LLF),将拉普拉西亚金字塔扩展为有边缘保护属性。它的处理成本高昂;因此,建议快速LLF加速线性地将多种拉普拉西亚金字塔进行线性内插。本文进一步提高了Fourier系列扩展的准确性,名为Fourier LLLLF。我们的结果表明,Fourier LLF对相同数量的金字塔的精确度更高。此外,四升LLLF展览的参数-适应性属性用于内容适应过滤。该代码可在https://norishigukurishima.github.io/GausianFourierPyramid/上查阅。