To search an optimal sub-network within a general deep neural network (DNN), existing neural architecture search (NAS) methods typically rely on handcrafting a search space beforehand. Such requirements make it challenging to extend them onto general scenarios without significant human expertise and manual intervention. To overcome the limitations, we propose Automated Search-Space Generation Neural Architecture Search (ASGNAS), perhaps the first automated system to train general DNNs that cover all candidate connections and operations and produce high-performing sub-networks in the one shot manner. Technologically, ASGNAS delivers three noticeable contributions to minimize human efforts: (i) automated search space generation for general DNNs; (ii) a Hierarchical Half-Space Projected Gradient (H2SPG) that leverages the hierarchy and dependency within generated search space to ensure the network validity during optimization, and reliably produces a solution with both high performance and hierarchical group sparsity; and (iii) automated sub-network construction upon the H2SPG solution. Numerically, we demonstrate the effectiveness of ASGNAS on a variety of general DNNs, including RegNet, StackedUnets, SuperResNet, and DARTS, over benchmark datasets such as CIFAR10, Fashion-MNIST, ImageNet, STL-10 , and SVNH. The sub-networks computed by ASGNAS achieve competitive even superior performance compared to the starting full DNNs and other state-of-the-arts. The library will be released at https://github.com/tianyic/only_train_once.
翻译:暂无翻译