Few-shot recognition aims to recognize novel categories under low-data regimes. Due to the scarcity of images, machines cannot obtain enough effective information, and the generalization ability of the model is extremely weak. By using auxiliary semantic modalities, recent metric-learning based few-shot learning methods have achieved promising performances. However, these methods only augment the representations of support classes, while query images have no semantic modalities information to enhance representations. Instead, we propose attribute-shaped learning (ASL), which can normalize visual representations to predict attributes for query images. And we further devise an attribute-visual attention module (AVAM), which utilizes attributes to generate more discriminative features. Our method enables visual representations to focus on important regions with attributes guidance. Experiments demonstrate that our method can achieve competitive results on CUB and SUN benchmarks. Our code is available at {https://github.com/chenhaoxing/ASL}.


翻译:由于图像稀缺,机器无法获得足够有效的信息,模型的概括能力极弱。通过使用辅助语义模式,最近基于几发微光的标准化学习方法取得了有希望的成绩。然而,这些方法只能增加支持课程的表述,而查询图像没有语义模式信息来增强表达。相反,我们提议了属性形状学习(ASL),它可以使视觉表现正常化,以预测查询图像的属性。我们进一步设计了一个属性-视觉关注模块(AVAM),它利用属性产生更多的歧视特征。我们的方法使得视觉表现能够侧重于具有属性指导的重要区域。实验表明,我们的方法可以在CUB和SUN基准上取得竞争性结果。我们的代码可在 https://github.com/chenhaoxing/ASL}查阅。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
54+阅读 · 2019年12月22日
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
54+阅读 · 2019年12月22日
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Top
微信扫码咨询专知VIP会员