We prove new explicit upper bounds on the leverage scores of Fourier sparse functions under both the Gaussian and Laplace measures. In particular, we study $s$-sparse functions of the form $f(x) = \sum_{j=1}^s a_j e^{i \lambda_j x}$ for coefficients $a_j \in \mathbb{C}$ and frequencies $\lambda_j \in \mathbb{R}$. Bounding Fourier sparse leverage scores under various measures is of pure mathematical interest in approximation theory, and our work extends existing results for the uniform measure [Erd17,CP19a]. Practically, our bounds are motivated by two important applications in machine learning: 1. Kernel Approximation. They yield a new random Fourier features algorithm for approximating Gaussian and Cauchy (rational quadratic) kernel matrices. For low-dimensional data, our method uses a near optimal number of features, and its runtime is polynomial in the $statistical\ dimension$ of the approximated kernel matrix. It is the first "oblivious sketching method" with this property for any kernel besides the polynomial kernel, resolving an open question of [AKM+17,AKK+20b]. 2. Active Learning. They can be used as non-uniform sampling distributions for robust active learning when data follows a Gaussian or Laplace distribution. Using the framework of [AKM+19], we provide essentially optimal results for bandlimited and multiband interpolation, and Gaussian process regression. These results generalize existing work that only applies to uniformly distributed data.


翻译:在 Gausian 和 Laplace 的测量方法下,我们证明Fleier 稀有函数的杠杆分数有新的明确的上限。 特别是, 我们研究美元( x) =\ sumäj=1 ⁇ a_ j e ⁇ i\ lambda_ j x}$ 系数$a_ j\ in\ mathbb{C} $ 和频率$lambda_ j\ in\ mathbb{R} 。 在不同的测量方法下, Fleier 稀薄的杠杆分数对近似数学理论感兴趣, 而我们的工作扩展了统一度[Erd17,CP19a] 的现有分析结果。 实际上, 我们的界限是由机器学习的两个重要应用程序驱动的 : 1. Kernel 调整。 它们产生一个新的随机的 Fourier 参数算法, 用于适应 Gaussian 和 Caucial 。 在低维度框架下, 我们的方法可以使用一个接近最佳的特性数, 而它的运行时间是非基流分布法 。 在 AL- dalalalalalalalalalalal- dalal- dalal 上, 将使用一个“ kalimaild dal dal dal dal disald dismal dismald” 将一个用于一个最接近一个用于一个正的计算。

0
下载
关闭预览

相关内容

专知会员服务
158+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员