Partial differential equations on manifolds have been widely studied and plays a crucial role in many subjects. In our previous work, a class of nonlocal models was introduced to approximate the Poisson equation on manifolds that embedded in high dimensional Euclid spaces with Dirichlet and Neumann boundaries. In this paper, we improve the accuracy of such model under Dirichlet boundary by adding a higher order term along a layer adjacent to the boundary. Such term is explicitly expressed by the normal derivative of solution and the mean curvature of the boundary, while the normal derivative is regarded as a variable. All the truncation errors that involve or do not involve such term have been re-analyzed and been significantly reduced. Our concentration is on the well-posedness analysis of the weak formulation corresponding to the nonlocal model and the convergence analysis to its PDE counterpart. The main result of our work is that, such manifold nonlocal model converges to the local Poisson problem in a rate of \mathcal{O}(\delta^2) in H^1 norm, where {\delta} is the parameter that denotes the range of support for the kernel of the nonlocal operators. Such convergence rate is currently optimal among all the nonlocal models according to the literature. Two numerical experiments are included to illustrate our convergence results on the other side.


翻译:在先前的工作中,我们引入了一类非本地模型,以将Poisson方程式与位于Drichlet和Neumann边界的高维欧克拉底空间的方块相近。在本文中,我们在Drichlet边界下改进了这种模型的准确性,在边界附近的一层增加一个更高的顺序术语。该术语以解决办法的正常衍生物和边界的平均曲线来明确表达,而正常衍生物则被视为一个变量。所有涉及或不涉及该术语的轨迹错误都已重新分析并显著减少。我们的重点是对与非本地模式相对应的弱方块的精度分析,以及对其PDE对等方的趋同分析。我们工作的主要结果是,在H1规范中,这种多重非本地模型与本地Poisson问题相融合,其比率为\mathcal{O}(\delta ⁇ 2),而正常衍生物的脱氧核酸差错误已被重新分析并显著减少。我们的重点是,与非本地模型相比,目前对当地结果的趋同率是其他模型中最接近的参数。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年5月10日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年10月27日
VIP会员
相关VIP内容
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员