We introduce a new algorithm for expected log-likelihood maximization in situations where the objective function is multi-modal and/or has saddle points, that we term G-PFSO. The key idea underpinning G-PFSO is to define a sequence of probability distributions which (a) is shown to concentrate on the target parameter value and (b) can be efficiently estimated by means of a standard particle filter algorithm. These distributions depends on a learning rate, where the faster the learning rate is the faster is the rate at which they concentrate on the desired parameter value but the lesser is the ability of G-PFSO to escape from a local optimum of the objective function. To conciliate ability to escape from a local optimum and fast convergence rate, the proposed estimator exploits the acceleration property of averaging, well-known in the stochastic gradient literature. Based on challenging estimation problems, our numerical experiments suggest that the estimator introduced in this paper converges at the optimal rate, and illustrate the practical usefulness of G-PFSO for parameter inference in large datasets. If the focus of this work is expected log-likelihood maximization the proposed approach and its theory apply more generally for optimizing a function defined through an expectation.


翻译:在目标功能为多模式和/或具有马鞍点的情况下,我们为预期的日志最大化引入一种新的算法,我们称之为G-PFSO。G-PFSO的关键理念是确定概率分布序列,以便(a) 显示集中于目标参数值,和(b) 可以通过标准的粒子过滤算法有效估算。这些分布取决于学习率,学习率越快,学习率越快,学习率就越注重理想参数值,但越少的是G-PFSO从目标函数的当地最佳组合率中逃脱的能力。为了调和从当地最佳和快速汇合率中逃脱的能力,拟议的估算员利用平均加速值的属性,这是在随机梯度文献中广为人知的。根据具有挑战性的估算问题,我们的数字实验表明,本文中引入的估测值在最佳率上趋于一致,说明G-PFSO对大数据集参数推算的实际用途越小。如果这项工作的侧重点是预期的极值,则通过最优化的理论化法将其应用为最优化。

0
下载
关闭预览

相关内容

《过参数化机器学习理论》综述论文
专知会员服务
46+阅读 · 2021年9月19日
专知会员服务
39+阅读 · 2021年8月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
《过参数化机器学习理论》综述论文
专知会员服务
46+阅读 · 2021年9月19日
专知会员服务
39+阅读 · 2021年8月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员