Let $P$ be a set of points in $\mathbb{R}^d$, where each point $p\in P$ has an associated transmission range $\rho(p)$. The range assignment $\rho$ induces a directed communication graph $\mathcal{G}_{\rho}(P)$ on $P$, which contains an edge $(p,q)$ iff $|pq| \leq \rho(p)$. In the broadcast range-assignment problem, the goal is to assign the ranges such that $\mathcal{G}_{\rho}(P)$ contains an arborescence rooted at a designated node and whose cost $\sum_{p \in P} \rho(p)^2$ is minimized. We study trade-offs between the stability of the solution -- the number of ranges that are modified when a point is inserted into or deleted from $P$ -- and its approximation ratio. We introduce $k$-stable algorithms, which are algorithms that modify the range of at most $k$ points when they update the solution. We also introduce the concept of a stable approximation scheme (SAS). A SAS is an update algorithm that, for any given fixed parameter $\varepsilon>0$, is $k(\epsilon)$-stable and maintains a solution with approximation ratio $1+\varepsilon$, where the stability parameter $k(\varepsilon)$ only depends on $\varepsilon$ and not on the size of $P$. We study such trade-offs in three settings. - In $\mathbb{R}^1$, we present a SAS with $k(\varepsilon)=O(1/\varepsilon)$, which we show is tight in the worst case. We also present a 1-stable $(6+2\sqrt{5})$-approximation algorithm, a $2$-stable 2-approximation algorithm, and a $3$-stable $1.97$-approximation algorithm. - In $\mathbb{S}^1$ (where the underlying space is a circle) we prove that no SAS exists, even though an optimal solution can always be obtained by cutting the circle at an appropriate point and solving the resulting problem in $\mathbb{R}^1$. - In $\mathbb{R}^2$, we also prove that no SAS exists, and we present a $O(1)$-stable $O(1)$-approximation algorithm.


翻译:LetsP$是美元( mathbb{ R ⁇ d$ ) 的一组点 。 在广播范围问题中, 目标是指定一个范围, 美元( m) 美元( p) 美元( p), 美元( p) 美元( 美元) 。 美元( 美元) 。 美元( 美元) 美元( 美元) 。 美元( 美元) 美元( 美元) 。 美元( 美元) 的值( 美元) 。 美元( 美元) 的值( 美元) 。 美元( P) 的值( 美元) 。 基值( 美元) 的值( 美元) 值( 美元) 。 局值( 美元) 值( 美元) 值( 美元) 的值( 美元) 。 我们的目标是指定一个范围( 美元) 的域( 美元), 以美元( 美元( 美元) 基值( 美元) 基值( 美元) 基值( 美元) 基值( 美元) 基值) 基值( 基值) 基值( 美元) 基值) 基值) 的值) 的值( 值) 值) 值( 。

0
下载
关闭预览

相关内容

静态分析越来越被认为是程序验证、错误检测、编译器优化、程序理解和软件维护的基本工具。国际静态分析系列研讨会(SAS)是展示该领域理论、实践和应用进展的主要场所。官网链接:http://www.staticanalysis.org/
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】现代C++初学者指南,301页pdf
专知会员服务
159+阅读 · 2020年7月24日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
PLANET+SAC代码实现和解读
CreateAMind
3+阅读 · 2019年7月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
(Python)时序预测的七种方法
云栖社区
10+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月12日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
PLANET+SAC代码实现和解读
CreateAMind
3+阅读 · 2019年7月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
(Python)时序预测的七种方法
云栖社区
10+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员