Devising optimal interventions for constraining stochastic systems is a challenging endeavour that has to confront the interplay between randomness and nonlinearity. Existing methods for identifying the necessary dynamical adjustments resort either to space discretising solutions of ensuing partial differential equations, or to iterative stochastic path sampling schemes. Yet, both approaches become computationally demanding for increasing system dimension. Here, we propose a generally applicable and practically feasible non-iterative methodology for obtaining optimal dynamical interventions for diffusive nonlinear systems. We estimate the necessary controls from an interacting particle approximation to the logarithmic gradient of two forward probability flows evolved following deterministic particle dynamics. Applied to several biologically inspired models, we show that our method provides the necessary optimal controls in settings with terminal-, transient-, or generalised collective-state constraints and arbitrary system dynamics.


翻译:设计限制随机和非线性系统的最佳干预措施是一项挑战性的工作,必须应对随机性和非线性之间的相互作用。现有的确定必要动态调整的方法,要么采用空间分解的局部差异方程式解决方案,要么采用迭接的随机路径抽样办法。然而,这两种办法在计算上都要求增加系统的维度。在这里,我们提出了一个普遍适用和切实可行、非线性系统获得最佳动态干预措施的非线性方法。我们估计了在确定性粒子动态之后,两种前方概率流的对数梯度的交互粒子近似所需的控制。我们应用了几个生物启发模型,显示我们的方法在终端、瞬变或一般集体状态制约和任意系统动态的环境中提供了必要的最佳控制。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员