We devise survey-weighted pseudo posterior distribution estimators under two-stage informative sampling of both primary clusters and secondary nested units for a one-way analysis of variance (ANOVA) population generating model as a simple canonical case where population model random effects are defined to be coincident with the primary clusters, for example student performance based on a survey of schools and students such as the 2000 OECD Programme for International Student Assessment (PISA). We consider estimation on an observed informative sample under both an augmented pseudo likelihood that co-samples the random effects, as well as an integrated likelihood that marginalizes out the random effects from the survey-weighted augmented pseudo likelihood. This paper includes a theoretical exposition that enumerates easily verified conditions for which estimation under the augmented pseudo posterior is guaranteed to be consistent at the true generating parameters. We reveal in simulation that both approaches produce asymptotically unbiased estimation of the generating hyperparameters for the random effects when a key condition on the sum of within cluster weighted residuals is met. We present a comparison with two frequentist alternatives, an expectation-maximization approach and a composite likelihood method that requires pairwise sampling weights.
翻译:我们根据对中小学和学生的调查,例如2000年经合组织国际学生评估方案(PISA),设计了调查加权假后座分布估计器,对初级组群和二级巢状单元进行两阶段信息抽样,作为单向差异分析(ANOVA)人口生成模型的模型,作为一个简单的典型案例,确定人口模型随机效应与初级组群相吻合,例如根据对学校和学生的调查,例如2000年经合组织国际学生评估方案(PISA),学生表现。我们考虑对观测到的信息样本进行估计,这两类样本都具有更大的伪可能性,即共同标注随机效应,以及综合的可能性,将调查加权增加的假可能性降低到随机效应的边缘。本文包括一个理论插图,其中列举了易于核实的条件,保证在扩大的伪后座群群群下进行估计符合真实生成参数。我们通过模拟发现,在满足集加权残渣总和的关键条件时,这两种方法都对产生随机效应的超参数产生无差别估计。我们比较了两种常见的替代方法,即预期-峰化方法和复合可能性方法,需要对准加权取样。