Light guide plates are essential optical components widely used in a diverse range of applications ranging from medical lighting fixtures to back-lit TV displays. An essential step in the manufacturing of light guide plates is the quality inspection of defects such as scratches, bright/dark spots, and impurities. This is mainly done in industry through manual visual inspection for plate pattern irregularities, which is time-consuming and prone to human error and thus act as a significant barrier to high-throughput production. Advances in deep learning-driven computer vision has led to the exploration of automated visual quality inspection of light guide plates to improve inspection consistency, accuracy, and efficiency. However, given the cost constraints in visual inspection scenarios, the widespread adoption of deep learning-driven computer vision methods for inspecting light guide plates has been greatly limited due to high computational requirements. In this study, we explore the utilization of machine-driven design exploration with computational and "best-practices" constraints as well as L$_1$ paired classification discrepancy loss to create LightDefectNet, a highly compact deep anti-aliased attention condenser neural network architecture tailored specifically for light guide plate surface defect detection in resource-constrained scenarios. Experiments show that LightDetectNet achieves a detection accuracy of $\sim$98.2% on the LGPSDD benchmark while having just 770K parameters ($\sim$33$\times$ and $\sim$6.9$\times$ lower than ResNet-50 and EfficientNet-B0, respectively) and $\sim$93M FLOPs ($\sim$88$\times$ and $\sim$8.4$\times$ lower than ResNet-50 and EfficientNet-B0, respectively) and $\sim$8.8$\times$ faster inference speed than EfficientNet-B0 on an embedded ARM processor.
翻译:光指导板是各种应用中广泛使用的基本光学组件,从医疗照明装置到背光电视显示,从医疗照明装置到背光显示,光指导板的制造过程中的一个重要步骤是质量检查抓痕、亮/黑斑和杂质等缺陷,这主要是在行业中通过人工视觉检查板样异常现象完成的,这种检查耗费时间,容易造成人为错误,从而成为高通量生产的重大障碍。深层次学习驱动计算机愿景的进展导致探索对光指导板进行自动视觉质量检查,以提高检查的一致性、准确性和效率。然而,鉴于视觉检查方案的成本限制,广泛采用深层次学习驱动的计算机视觉方法检查光指导板,因为计算要求很高。 在计算和“最佳做法”的限制下,我们探索如何利用机器驱动的设计探索,以创造轻达光网,一个高精度的低效电离心电离心电网,比专门为光导面值值0.80美元, OP-88美元,在资源-稳定度检测中,S-DM 快速度测测算,光光光光导测距20美元,在资源-时间定位中,并且测测测测测测基的RDD-R2美元-RF-RF-R-R-S-S-S-S-S-S-IF-S-S-I-I-I-I-S-I-S-S-I-I-I-I-I-I-I-S-S-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-