This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster.
翻译:这项工作研究寻找最佳核心抗拉形状的组合优化问题, 也称为多线级等级, 用于一个大小受限制的塔克分解。 我们通过连接到更高级的单值, 给其重建错误提供可变近似保障的算法。 具体地说, 我们引入了一个新颖的塔克包装问题, 被证明是NP- 硬的, 并给出一个基于减少双维顶峰值问题的多米时间近似方案。 我们还将我们的技术推广到树上 Exmor 网络分解。 我们使用一个整数的编程求解器来实施我们的算法, 并显示其解决方案质量与每个步骤使用真正的塔克分解损失的贪婪算法相比具有竞争力( 有时甚至更好 ), 同时快速运行到 1000x 。