Multi-aspect controllable text generation is a more challenging and practical task than single-aspect control. Existing methods achieve complex multi-aspect control by fusing multiple controllers learned from single-aspect, but suffer from attribute degeneration caused by the mutual interference of these controllers. To address this, we provide observations on attribute fusion from a distributional perspective and propose to directly search for the intersection areas of multiple attribute distributions as their combination for generation. Our method first estimates the attribute space with an autoencoder structure. Afterward, we iteratively approach the intersections by jointly minimizing distances to points representing different attributes. Finally, we map them to attribute-relevant sentences with a prefix-tuning-based decoder. Experiments on the three-aspect control task, including sentiment, topic, and detoxification aspects, reveal that our method outperforms several strong baselines on attribute relevance and text quality and achieves the SOTA. Further analysis also supplies some explanatory support for the effectiveness of our approach.
翻译:多关可控文本生成比单关节控制更具有挑战性和实用性。 现有方法通过将从单关节学到的多个控制器引信化,实现复杂的多关节控制,但因这些控制器的相互干扰而导致的特性变异。 为此,我们从分布角度对属性聚合进行观察,并提议直接搜索多个属性分布的交叉区域作为生成的组合。 我们的方法首先用自动编码器结构来估计属性空间的属性空间。 之后, 我们迭接地接近交叉点, 共同将距离减少到代表不同属性的点。 最后, 我们用前缀调法解码绘制它们属性相关句的地图。 对三关节控制任务的实验, 包括情绪、 主题和解毒方面, 表明我们的方法在属性相关性和文本质量上超越了几个强有力的基线, 并实现了SOTA。 进一步的分析也为我们的方法的有效性提供了一些解释性支持。