Embedding-based methods are popular for Knowledge Base Question Answering (KBQA), but few current models have numerical reasoning skills and thus struggle to answer ordinal constrained questions. This paper proposes a new embedding-based KBQA framework which particularly takes numerical reasoning into account. We present NumericalTransformer on top of NSM, a state-of-the-art embedding-based KBQA model, to create NT-NSM. To enable better training, we propose two pre-training tasks with explicit numerical-oriented loss functions on two generated training datasets and a template-based data augmentation method for enriching ordinal constrained QA dataset. Extensive experiments on KBQA benchmarks demonstrate that with the help of our training algorithm, NT-NSM is empowered with numerical reasoning skills and substantially outperforms the baselines in answering ordinal constrained questions.
翻译:嵌入式方法在知识基础问题解答中很受欢迎,但目前很少有模型具备数字推理技能,因此难以回答受约束的问题。本文件提议一个新的嵌入式KBQA框架,其中特别考虑到数字推理。我们在NSM(一个以最先进的嵌入为基础的KBQA模型)上展示了基于嵌入式方法,以创建NT-NSM。为了能够进行更好的培训,我们提议了两项培训前任务,其中两项任务具有明确的数字导向损失功能,涉及两个生成的培训数据集和基于模板的数据增强方法,用于丰富受限制的QA数据集。关于KBQA基准的广泛实验表明,在我们的培训算法的帮助下,NT-NSM具备了数字推理技能,大大超出了回答受约束问题的基线。