Textual logical reasoning, especially question answering (QA) tasks with logical reasoning, requires awareness of particular logical structures. The passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence). However, such structures are unexplored as current QA systems focus on entity-based relations. In this work, we propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs). The networks perform two procedures: (1) logic graph construction that leverages in-line discourse connectives as well as generic logic theories, (2) logic representation learning by graph networks that produces structural logic features. This pipeline is applied to a general encoder, whose fundamental features are joined with the high-level logic features for answer prediction. Experiments on three textual logical reasoning datasets demonstrate the reasonability of the logical structures built in DAGNs and the effectiveness of the learned logic features. Moreover, zero-shot transfer results show the features' generality to unseen logical texts.


翻译:逻辑逻辑推理,特别是有逻辑推理的解答(QA)任务,要求了解特定的逻辑结构。通过水平逻辑关系代表了标语单位之间的必然或矛盾(例如,最后一句)。然而,由于当前的质量评估系统侧重于实体关系,这种结构没有被探索。在这项工作中,我们提出了逻辑结构约束模型,以解决逻辑推理QA,并引入了有逻辑解析图网络(DAGNs)。网络执行两种程序:(1)逻辑图形构建,利用线性话语连接和通用逻辑理论,(2)通过图形网络进行逻辑表述学习,产生结构逻辑逻辑逻辑特征。这一管道用于一个普通编码器,其基本特征与高层次逻辑特征相结合,用于回答预测。对三种文字逻辑推理数据集的实验表明DAGNs所建逻辑结构的合理性以及所学逻辑特征的有效性。此外,零光传输结果显示这些特征对可视逻辑文本的一般性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员