Aerial navigation in GPS-denied, indoor environments, is still an open challenge. Drones can perceive the environment from a richer set of viewpoints, while having more stringent compute and energy constraints than other autonomous platforms. To tackle that problem, this research displays a biologically inspired deep-learning algorithm for simultaneous localization and mapping (SLAM) and its application in a drone navigation system. We propose an unsupervised representation learning method that yields low-dimensional latent state descriptors, that mitigates the sensitivity to perceptual aliasing, and works on power-efficient, embedded hardware. The designed algorithm is evaluated on a dataset collected in an indoor warehouse environment, and initial results show the feasibility for robust indoor aerial navigation.
翻译:在GPS封闭的室内环境中的空中导航仍是一个公开的挑战。 无人机可以从更丰富的观点来看待环境,同时比其他自主平台更严格地计算和能源限制。 为了解决这一问题,这项研究展示了生物启发的深学习算法,用于同步定位和绘图(SLAM)及其在无人驾驶导航系统中的应用。 我们提出了一个不受监督的代表性学习方法,该方法可以产生低维潜伏状态描述器,降低对概念化别名的敏感度,并研究节能嵌入的硬件。 设计的算法是根据在室内仓库环境中收集的数据集进行评估的,初步结果显示室内航空导航是否可行。