Image matting is an important computer vision problem. Many existing matting methods require a hand-made trimap to provide auxiliary information, which is very expensive and limits the real world usage. Recently, some trimap-free methods have been proposed, which completely get rid of any user input. However, their performance lag far behind trimap-based methods due to the lack of guidance information. In this paper, we propose a matting method that use Flexible Guidance Input as user hint, which means our method can use trimap, scribblemap or clickmap as guidance information or even work without any guidance input. To achieve this, we propose Progressive Trimap Deformation(PTD) scheme that gradually shrink the area of the foreground and background of the trimap with the training step increases and finally become a scribblemap. To make our network robust to any user scribble and click, we randomly sample points on foreground and background and perform curve fitting. Moreover, we propose Semantic Fusion Module(SFM) which utilize the Feature Pyramid Enhancement Module(FPEM) and Joint Pyramid Upsampling(JPU) in matting task for the first time. The experiments show that our method can achieve state-of-the-art results comparing with existing trimap-based and trimap-free methods.


翻译:图像交配是一个重要的计算机视觉问题。 许多现有的交配方法需要手工制作的三角图来提供辅助性信息, 这非常昂贵, 限制了真实世界的使用 。 最近, 提出了一些不使用 trimp 的方法, 完全清除了任何用户输入 。 但是, 由于缺乏指导信息, 它们的性能远远落后于基于 trimap 的方法 。 在本文中, 我们提出一种交配方法, 使用灵活指导输入作为用户提示, 这就意味着我们的方法可以使用 trimap、 scriblemap 或点击map 来作为指导性信息, 甚至可以在没有任何指导投入的情况下工作 。 为了实现这一点, 我们提议了 递增 Trimap Deformat (PTD) 计划, 逐渐缩小了 毛底和底底图的背景, 随着培训步骤的增加, 最终变成一个拼图 。 为了让任何用户都能够乱画和点击, 我们随机地在前地和背景上采集样本, 并进行曲线调整 。 此外, 我们提议使用 Smantic com comfor com sugration sugration 模模模模模模模模块, 将我们目前的任务方法比比平平平平比平比平图的方法。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
12+阅读 · 2020年8月3日
Foreground-aware Image Inpainting
Arxiv
4+阅读 · 2019年1月17日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Top
微信扫码咨询专知VIP会员