Image inpainting is an effective method to enhance distorted digital images. Different inpainting methods use the information of neighboring pixels to predict the value of missing pixels. Recently deep neural networks have been used to learn structural and semantic details of images for inpainting purposes. In this paper, we propose a network for image inpainting. This network, similar to U-Net, extracts various features from images, leading to better results. We improved the final results by replacing the damaged pixels with the recovered pixels of the output images. Our experimental results show that this method produces high-quality results compare to the traditional methods.
翻译:图像油漆是增强扭曲的数字图像的有效方法。 不同的油漆方法使用邻近像素的信息来预测缺失像素的价值。 最近深层的神经网络被用来学习图像的结构和语义细节, 用于油漆。 在本文件中, 我们建议建立一个图像油漆网络。 这个网络与 U-Net 相似, 从图像中提取各种特征, 导致更好的结果。 我们改进了最终结果, 用回收的像素取代损坏的像素。 我们的实验结果显示, 与传统方法相比, 这个方法产生了高质量的结果 。