Recent years have seen a rich literature of data-driven approaches designed for power grid applications. However, insufficient consideration of domain knowledge can impose a high risk to the practicality of the methods. Specifically, ignoring the grid-specific spatiotemporal patterns (in load, generation, and topology, etc.) can lead to outputting infeasible, unrealizable, or completely meaningless predictions on new inputs. To address this concern, this paper investigates real-world operational data to provide insights into power grid behavioral patterns, including the time-varying topology, load, and generation, as well as the spatial differences (in peak hours, diverse styles) between individual loads and generations. Then based on these observations, we evaluate the generalization risks in some existing ML works causedby ignoring these grid-specific patterns in model design and training.
翻译:近年来,数据驱动的方法在电力系统中得到了广泛的应用。然而,这些方法在实际应用中如果没有充分考虑到特定领域的知识,则会给应用带来很高风险。特别是,忽略电力网特有的时空模式(如负荷、发电和拓扑结构等)可能会导致在新输入上输出不可行的、不可实现的或完全没有意义的预测结果。为了解决这个问题,本文通过研究实际运行数据,提供了关于电力网行为模式的深入洞察,包括时间变化的拓扑结构、负荷和发电以及单个负荷和发电之间的空间差异(如高峰时段、不同类型等)。然后,基于这些观察结果,本文评估了一些现有机器学习方法中由于忽略这些电力网特定模式而导致的泛化风险。