Multi-modal domain translation typically refers to synthesizing a novel image that inherits certain localized attributes from a 'content' image (e.g. layout, semantics, or geometry), and inherits everything else (e.g. texture, lighting, sometimes even semantics) from a 'style' image. The dominant approach to this task is attempting to learn disentangled 'content' and 'style' representations from scratch. However, this is not only challenging, but ill-posed, as what users wish to preserve during translation varies depending on their goals. Motivated by this inherent ambiguity, we define 'content' based on conditioning information extracted by off-the-shelf pre-trained models. We then train our style extractor and image decoder with an easy to optimize set of reconstruction objectives. The wide variety of high-quality pre-trained models available and simple training procedure makes our approach straightforward to apply across numerous domains and definitions of 'content'. Additionally it offers intuitive control over which aspects of 'content' are preserved across domains. We evaluate our method on traditional, well-aligned, datasets such as CelebA-HQ, and propose two novel datasets for evaluation on more complex scenes: ClassicTV and FFHQ-Wild. Our approach, Sensorium, enables higher quality domain translation for more complex scenes.


翻译:多式域翻译通常指将新颖图像合成,该图像从“ 内容” 图像( 如布局、 语义或几何学) 中继承某些本地化属性( 例如布局、 语义或几何学), 从“ 风格” 图像中继承其他一切( 例如纹理、 照明, 有时甚至语义) 。 这项任务的主要方法是从零开始学习分解的“ 内容” 和“ 风格” 表达方式。 然而, 这不仅具有挑战性, 而且是错误的, 因为用户在翻译过程中希望保存的内容取决于他们的目标。 受这种固有的模糊性驱使, 我们定义“ 内容” 是基于从现成的预先训练模式中提取的信息的。 然后我们用一种最易优化的重建目标组合来训练我们的风格选取和图像解码。 各种高质量的预先训练前模式和简单培训程序使我们的方法能够直接适用于多个领域和“ 内容” 定义。 此外,它提供了对“ 内容” 的哪些方面保存在跨域中的直观控制。 我们评估了我们的传统、 深层次、 质量 和高端端域的翻译方法, 用于我们更复杂版本的数据。

0
下载
关闭预览

相关内容

信息抽取 (Information Extraction: IE)是把文本里包含的信息进行结构化处理,变成表格一样的组织形式。输入信息抽取系统的是原始文本,输出的是固定格式的信息点。信息点从各种各样的文档中被抽取出来,然后以统一的形式集成在一起。这就是信息抽取的主要任务。信息以统一的形式集成在一起的好处是方便检查和比较。 信息抽取技术并不试图全面理解整篇文档,只是对文档中包含相关信息的部分进行分析。至于哪些信息是相关的,那将由系统设计时定下的领域范围而定。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
4+阅读 · 2019年8月7日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员